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1. INTRODUCTION

It has been long recognized that the dynamic behavior of structural members is a!ected by
local changes in physical properties such as sti!ness, mass and damping. This has motivated
numerous investigations in the past few years with the objective of relating changes in
vibrational responses to the presence of damaged sites in a structure. A thorough review of
such methods may be found in reference [1], where the author stresses the importance of the
utilization of a mathematical model in the diagnostic method when not only detection, but
also location and quanti"cation of the damage are intended.

Of particular interest is the identi"cation problem when damage has the form of a fatigue
crack. The development of reliable vibration-based crack diagnostic is yet to be
accomplished, but many advances have been reported in the past few years. Modelling
techniques for the vibrations of cracked structures have been the subject of a very detailed
literature review found in reference [2]. Recently, some researchers have directed their
e!orts to the development of a family of continuous models of cracked bars and beams.
Christides and Barr [3] published the "rst model of this family with the investigation of
double-edge, symmetric cracks. They used a stationary variational principle and cleverly
chosen kinematic assumptions to derive a partial di!erential equation of motion for
a cracked slender beam. Numerous publications applying those ideas have appeared in
recent years [4}6]. In particular, Shen and Pierre [6] published a very interesting extension
of the methodology to the case of single-edge cracks. This paper aims to report and discuss
some results obtained when implementing Shen's single-edge crack model for investigations
of a damage detection methodology. The basic equations are reviewed and the terms
believed to cause numerical problems are analyzed.

2. REVIEW OF THE MATHEMATICAL MODEL

2.1. THE HU}WASHIZU}BARR VARIATIONAL PRINCIPLE

The equations of motion of a cracked beam-like structure are derived through
the Hu}Washizu}Barr [7] variational method, which can be viewed as an extension of the
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Hellinger}Reissner stationary principle [8] and allows independent kinematic assumptions
on the displacement, velocities, strain and stress "elds in elastodynamic problems. The
variational method states that for independent variations of displacements u
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where=(e
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) is the strain energy density, ¹K (p

i
) the kinetic energy density, B

i
the body forces,

and g
i
the surface tractions. The overbarred quantities g6

i
and u6

i
are the prescribed surface

tractions and displacements acting over surfaces S
1

and S
2

respectively. Equation (1) is the
starting point for the derivation of an approximate model of a cracked beam including shear
deformations.

2.2. KINEMATIC ASSUMPTIONS

The reduction of the 3-D elastic problem to a simpli"ed, beam-like unidimensional
system is achieved by the imposition of convenient kinematic assumptions to the stress,
strain and displacement "elds. The stress and strain "elds in the axial direction are assumed
to be modi"ed, in reference [6], as

p
xx

(x, z, t)"(!z#f (x, z))¹ (x, t), (2)

and

e
xx

(x, z, t)"(!z#f (x, z))S (x, t), (3)

where ¹(x, t) and S (x, t) are the unknown unidimensional stress and strain "elds
respectively. The function f (x, z) is the so-called crack disturbance function and is chosen
such that the above "elds can represent the e!ect of stress concentration in the vicinity of
the cracked region. For a cracked beam with the geometry depicted in Figure 1, that
Figure 1. Typical geometry of a cracked beam.



Figure 2. Crack function for normal stress disturbance f
1
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function is de"ned as

f (x, z)"Cz!mAz#
a

2BH (d!a!zBD expA!a
Dx!x

c
D

d B . (4)

The localized nature of the stress concentration e!ect is represented by the exponential
decay function H (z) is the unit step function and is included to represent the zero stress
condition on the crack faces. The parameter m is the slope of the linear stress distribution at
the cracked section and is calculated by assuming continuity of the bending moment at the
crack site, as discussed later. The parameter a is the rate of stress decay in the x direction
and has to be estimated from experimental results [7] or from a detailed "nite element
model [6]. Figure 2 shows a plot of the crack function in the vicinity of the crack tip. In
the absence of a crack the stress and strain "elds will reduce to a linear function in the
z direction (along the cross-section), which is the usual mathematical representation of
the assumption that cross-sections remain plane and perpendicular to the neutral line after
deformation, typical of the Euler}Bernoulli (E}B) beam model.

In addition to the changes in the axial stress and strain, the displacement "eld is also
modi"ed to account for the local change in the neutral axis caused by the presence of
a crack on one edge only. The assumption is

u@
x
(x, z, t)"(!z#g (x, z))wA (x, t). (5)

The function g(x, z) modi"ed the "rst derivative of the axial displacement, and has a form
similar to the stress/strain crack functions

g (x, z)"Cz!Az#
a

2B HAd!a!zB expA!2b
Dx!x

c
D

d BD. (6)
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Here the decay parameter b is obtained by a curve "tting of g (x, z) to the function 1/Jr,
where r is the distance to the crack tip, in order to reproduce the e!ect of the stress/strain
singularity, well known from linear elastic fracture mechanics results. In summary, the
kinematic assumptions are
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2.3. EQUATIONS OF MOTION

Introducing equation (7) in the functional in equation (1) and considering the variations
d¹, dS, dP

z
, dw are independent and arbitrary, Shen and Pierre derived the di!erential

equation for the free vibrations of a cracked beam
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where the coe$cients are de"ned in Appendix A. Details of this derivation may be found in
reference [6].

3. DISCUSSION

3.1. SELF-ADJOINTNESS OF THE STIFFNESS OPERATOR

The eigenvalue problem associated with equation (33) may be rewritten in simpli"ed
notation as

p
4
(x)=(*7)(x)#p

3
(x)=@@@(x)#p

2
(x)=A (x)"X2

oA

E
=. (9)

The left-hand side of equation (9) is the sti!ness operator L applied to the eigenvectors
= of the problem. A necessary condition for a fourth order di!erential operator to be
self-adjoint is that it can be written in the general form

L="(q
2
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0
(x)=. (10)

In equation (9) there are no terms in= @ or=, which implies
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and the following relations should be veri"ed:

p
3
"2p@

4
, pA

4
!p

2
"const. (11)

Both expressions in equation (11) hold only when g(x, z) is identically zero. Therefore, the
sti!ness operator is in general not self-adjoint and may produce a sti!ness matrix that is not
symmetric and consequently yields complex eigenvalues and eigenvectors, which are
inconsistent with the physics of the problem. It is believed that this is caused by the use of
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the following approximation in the derivation:

du
x
(x, z, t)"(!z#g (x, z)) dw@ (x, t), (12)

which would be true if

u
x
(x, z, t)"(!z#g (x, z))w@(x, t), (13)

yielding

u@
x
(x, z, t)"(!z#g (x, z))wA(x, t)#g@ (x, z)w@ (x, t), (14)

which in turn is inconsistent with equation (5). To overcome this limitation, a slight
modi"cation in the kinematic assumptions is proposed here as

u
x
(x, z, t)"(!z#g (x, z))w@ (x, t ), (15)

with all the corresponding derivatives and variations. Rederiving the equations of motion,
we get
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which, with the variationally consistent boundary conditions
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is now self-adjoint, as shown in reference [9].

3.2. EFFECTS OF g (x, z) ON NUMERICAL ACCURACY

The inclusion of the displacement disturbance function proposed in equation (6) can also
lead to numerical inconveniences. Due to the steep nature of g(x, z), very small integration
steps are needed to capture its e!ect on the structural matrices. A series of simulations with
and without the inclusion of g (x, z) was investigated, using the same cantilever beam
example in reference [5]. Natural frequencies of the beam with an open crack were
computed for di!erent crack depths and positions. The calculation of the terms in the
sti!ness matrix were performed using the MATLAB

(TM) high order quadrature function
QUAD8, with relative error set to its default value, 1e-3, recommended for most cases. This
function is basically an adaptive integration routine, which automatically re"nes the
integration step based on precision requirements. The same calculations were then repeated
with a more re"ned precision, now set at 1e-7, and the results for di!erent crack locations
are summarized in Figures 3}5. It is apparent that with the new precision settings the results
with and without g are identical for any practical purposes. More importantly, they are in
very good agreement with the results obtained with the lower precision settings when the
displacement functions are not included, which indicates that the only e!ect of the inclusion
of function g(x, z) is the need for a more re"ned integration procedure, with no apparent



Figure 3. In#uence of displacement disturbance function g on the natural frequencies of a simply supported
slender beam, ¸/2d"24)65, x

c
/¸"0)2. (a) Natural frequency d1, (b) d2, (c) d3, (d) d4, +, with g, default; L,

w/o g, default; e, with g, re"ned.
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advantages to the quality of the model. In fact, the more re"ned precision in the presented
simulations increases the integration time by a factor of two or more, which implies an
extremely high price to pay to avoid the occasional numerical imprecisions depicted in
Figures 3}5. In short, inclusion of g (x, z) as de"ned introduces very small contributions to
the model at an unreasonably high numerical price.

4. CONCLUSION

The continuous model for the vibrations of a beam with a single-edge crack developed by
Shen and Pierre was reviewed. A modi"cation to the derivation was proposed in order to
overcome the lack of self-adjointness of the resulting sti!ness operator and a new version of
the equation of motion was presented.

The e!ect of the crack disturbance function on the natural frequencies of a cantilever
cracked beam was investigated. The results were dependent on the re"nement of the
integration routine, which might require extensive numerical tests before accurate values
are obtained. In addition, it was shown that results with and without the inclusion of g (x, z)
are virtually identical when the precision of numerical integration is adequate. This
ultimately means that the displacement disturbance function can be omitted from the
proposed model without compromising the numerical accuracy, providing computational



Figure 4. In#uence of displacement disturbance function g on the natural frequencies of a simply supported
slender beam, ¸/2d"24)65, x

c
/¸"0)3. (a) Natural frequency d1, (b) d2, (c) d3, (d) d4, +, with g, default; L,

w/o g, default; e, with g, re"ned.
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savings, which is especially important when using the model in iterative model-based crack
detection methods.
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Figure 5. In#uence of displacement disturbance function g on the natural frequencies of a simply supported
slender beam, ¸/2d"24)65, x

c
/¸"0)4. (a) Natural frequency d1, (b) d2, (c) d3, (d) d4, +, with g, default; L,

w/o g, default; e, with g, re"ned.
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APPENDIX A: COEFFICIENT FUNCTIONS IN THE EQUATIONS OF MOTION

The coe$cients in equations (8) and (16) are expressed as
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The generalized inertia integrals are obtained via integration over the cross-section of
di!erent product combinations involving the crack perturbation functions, de"ned as
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